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Tightly-coupled Integrated Energy Systems (IES) play an important role 
in load-balancing
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• Intermittent renewable energy adds 
volatility to electricity prices

• IES can leverage capabilities of diverse 
energy generators to provide heat, power, 
mobility and storage

— Ramp up electricity production when renewables are offline
— Produce hydrogen while electricity is cheap

How fast can these systems switch between operating points?



Hydrogen production will play a crucial role in the energy transition and 
decarbonization
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• Most industrial hydrogen is produced 
through steam-methane reforming, which 
uses fossil fuels as feedstock

• Water electrolysis is a potential 
replacement, producing no direct 
greenhouse gas emissions when 
renewable energy is used

• Nernst potential decreases with increasing 
reaction temperature

The minimum potential difference at 
which electrolysis can occur
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Solid-oxide electrolysis cells (SOECs) are candidates for efficient 
electrolysis
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• SOECs operate at 600 °C to 1000 °C, much 
higher temperatures than other 
electrolysis technologies

Dynamics, health modeling and advanced process control are needed to improve SOEC operational 
performance and thermal management while reducing cell degradation during frequent transients
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Electrolyte: hard, non-porous ceramic material

• High temperature operation comes with 
significant drawbacks
— Additional heat exchange equipment
— Good thermal insulation
— Careful control during transition 

between operating points
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Process flow diagram of SOEC flowsheet

F: 1.323 kmol/s
T: 378.15 K
P: 1.200 bar

F: 1.323 kmol/s
T: 448.38 K
P: 1.200 bar

F: 1.323 kmol/s
T: 906.86 K
P: 1.200 bar

F: 2.261 kmol/s
T: 288.15 K
P: 1.013 bar

F: 2.261 kmol/s
T: 946.18 K
P: 1.200 bar

F: 5.018 kmol/s
T: 970.85 K
P: 1.200 bar
yO2: 28.574%

F: 2.646 kmol/s
T: 957.86 K
P: 1.200 bar
yH2: 37.496%

Trim heater

Compressor

F: 1.323 kmol/s
T: 478.67 K
P: 1.200 bar
yH2: 74.991%

F: 2.646 kmol/s
T: 1020.47 K
P: 1.200 bar
yH2: 74.991%
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Dynamic SOEC modeling as an integration of submodules

Fuel electrode: water is 
reduced into hydrogen

Oxygen electrode: electrode 
to which O2- ions diffuse

Nonisothermal, planar SOEC

Anode (fuel) channel model

𝐶: molar density, 𝐽: flux, 𝐷: diffusivity, 
ac: anode channel, an: anode, 𝑖: species

Bhattacharyya et al. (2007)

Allan et al. (Under review)
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Dynamic SOEC modeling as an integration of submodules

Anode (fuel electrode) model

𝐶: concentration, 𝐽: flux, 𝐷: diffusivity, 
ac: anode channel, an: anode, 𝑖: species

Cathode (oxygen) channel model

Cathode (oxygen electrode) model

…

…

— Activation polarization at the cathode and anode
— Ohmic polarization

Electrochemical model

Bhattacharyya et al. (2007)

Allan et al. (Under review)
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System performance constraints

Overall conversion of steam to H2 ≤ 75%

H2 concentration in feed ≥ 5%

O2 concentration in sweep outlet ≤ 35%

Maximum magnitude of thermal gradient ≤ 205 K/m

Transient violations are acceptable 
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Classical process control pairings

Controller Manipulated 
Variable (MV)

Controlled Variable (CV)

PI Cell potential Water conversion

PI Steam feed rate Hydrogen production rate

PI Steam heater 
duty

Steam heater outlet 
temperature

PI Sweep heater 
duty

Sweep heater outlet 
temperature

P Steam heater 
outlet 
temperature 
setpoint*

SOEC steam outlet 
temperature

P Sweep heater 
outlet 
temperature 
setpoint*

SOEC sweep outlet 
temperature

P Sweep recycle 
ratio

SOEC sweep outlet 
temperature

None Sweep feed rate

None Steam recycle 
ratio

*artificial variablesAllan et al. (Under review)
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Nonlinear Model Predictive Control (NMPC) can handle highly 
interactive manipulated variables

NMPC framework developed for setpoint transition using the same 7 manipulated variables

Trajectory 
tracking of H2

production rate

Deviations of manipulated (𝑢𝑖𝑗) and controlled 

variables (𝑥𝑖𝑘) from reference values

Rate of change 
penalties on trim 
heater duties

l1-penalties for 

temperature 
gradient constraints

To prevent thermal degradation over time, the magnitude of 
the temperature gradient along the cell length (𝑧-direction) 
is constrained to be below 205 K/m

An l1-penalty relaxation treats them as soft 

constraints with non-negative slack variables 
𝑝 and 𝑛 penalized in the objective
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Dynamic simulation and control solution approaches to compare 
classical control with NMPC

• Case study: ramp H2 production
— Minimum (0.4 kg/s) to maximum (2.0 kg/s) and 

back to minimum
— Each ramp performed over 30 min followed by 2 

hrs of settling time
• Solution approach

— Classical: PETSc variable step implicit Euler DAE 
solver

— NMPC: Full-discretization NLP with IPOPT solver
• Problem size

— Approximately 16000 equations and variables
— Average solution time of 35.5s for a prediction 

horizon of 750s
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Dynamic simulation and control results

NMPC contains thermal gradients significantly 
better than sophisticated classical control

• Hydrogen production tracking is identical
• Efficiency for NMPC is lower during 

transients as it is takes into account the 
restriction of thermal degradation 
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Dynamic simulation and control results

Settling of trim heater duties is faster with NMPC Performance constraints are satisfied, slight 
violations during transients
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Dynamic simulation and control results

NMPC yields a quicker response in terms of settling of SOEC inlet, outlet and stack temperatures
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Conclusions, impacts and future directions

Arent et al. (2021)

• IDAES offers an ecosystem of large-scale dynamic 
models for integrated energy systems, as well as 
classical and advanced control capabilities

• Setpoint tracking NMPC can restrict temperature 
gradients more effectively compared to classical 
control

• Matching the tracking performance of NMPC 
requires a sophisticated approach with cascade 
control – NMPC is suited to handle complex multi-
input multi-output systems

• Economic NMPC with more general objective functions

Future work

• Effective mode switching between hydrogen 
production and power generation modes

Low-temperature electrolysis

Renewable power generation

Nuclear|Thermal|Electrolysis

Renewable power|Electrolysis

Nuclear|Thermal|Renewables

All

When both electricity and hydrogen are 
expensive, IES that produce both are preferred



idaes.org

github.com/IDAES/idaes-pse
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